Overview of nanoparticle effects (Homo sapiens)

From WikiPathways
Jump to: navigation, search
COX1 (PTGS1) COX2 (PTGS2) Prostaglandin NF-kB Bax IL-6 Il-8 Bcl-2 TNF-a Cell migration Angiogenesis Differentiation Astrocytes depletion in hepatocytes Cell death DNA damage Acute lung effects: hypercoagulation, hypofibrinolysis, etc. Coronary heart disease, plaques, DIC Endocytosis Exocytosis Phagocytosis Mitochondrial potential Genotoxicity / Cancer Nanoparticle Inflammation Necrosis Apoptosis Autophagic cell death Necroptosis Oxidative stress Cell adhesion Cytoskeleton Blood coagulation Immune system up or down regulation Prostaglandin pathway C-reactive protein HMOX1 Actin Glutathione TNF-a Signaling Il-6 signaling DNA damage response Cell cycle Integrin PI3K AKT P-cadherin FAK (PTK2) fibronectin collagen IV cyclin D3 laminin Metallothionein ferritin Name: Overview of nanoparticle effects Organism: Homo sapiens


This pathway is giving a summary of currently known nanoparticle effects on cells and organisms. Although there is currently no nanoparticle specific effect known, there is a cascade of effects triggered if cells or organisms are exposed to nanoparticles: The most abundantly observed event is oxidative stress which causes DNA damage, protein and lipid oxidation, and cell death. The mere overload of nanoparticles in the vesicular system lead to cytoskeleton and cell adhesion problems and interfere with the cells autophagic system. Some specific nanoparticles are reported to interfere with the cell membrane, others stimulate the blood coagulation system. The release of metal ions from specific nanoparticles challenges the metal disposal system of the cell.

Quality Tags

Ontology Terms



  1. Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H; ''Cytotoxicity of single-wall carbon nanotubes on human fibroblasts.''; Toxicol In Vitro, 2006 PubMed
  2. Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA; ''Nanoparticles and the immune system.''; Endocrinology, 2010 PubMed
  3. Li JG, Li WX, Xu JY, Cai XQ, Liu RL, Li YJ, Zhao QF, Li QN; ''Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation.''; Environ Toxicol, 2007 PubMed
  4. Ilinskaya AN, Dobrovolskaia MA; ''Immunosuppressive and anti-inflammatory properties of engineered nanomaterials.''; Br J Pharmacol, 2014 PubMed
  5. Azim SA, Darwish HA, Rizk MZ, Ali SA, Kadry MO; ''Amelioration of titanium dioxide nanoparticles-induced liver injury in mice: possible role of some antioxidants.''; Exp Toxicol Pathol, 2015 PubMed
  6. Du Z, Zhao D, Jing L, Cui G, Jin M, Li Y, Liu X, Liu Y, Du H, Guo C, Zhou X, Sun Z; ''Cardiovascular toxicity of different sizes amorphous silica nanoparticles in rats after intratracheal instillation.''; Cardiovasc Toxicol, 2013 PubMed
  7. Nawrot TS, Perez L, Künzli N, Munters E, Nemery B; ''Public health importance of triggers of myocardial infarction: a comparative risk assessment.''; Lancet, 2011 PubMed
  8. Ma YH, Huang CP, Tsai JS, Shen MY, Li YK, Lin LY; ''Water-soluble germanium nanoparticles cause necrotic cell death and the damage can be attenuated by blocking the transduction of necrotic signaling pathway.''; Toxicol Lett, 2011 PubMed
  9. Johnson-Lyles DN, Peifley K, Lockett S, Neun BW, Hansen M, Clogston J, Stern ST, McNeil SE; ''Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction.''; Toxicol Appl Pharmacol, 2010 PubMed
  10. Nemmar A, Holme JA, Rosas I, Schwarze PE, Alfaro-Moreno E; ''Recent advances in particulate matter and nanoparticle toxicology: a review of the in vivo and in vitro studies.''; Biomed Res Int, 2013 PubMed
  11. Hohnholt MC, Geppert M, Luther EM, Petters C, Bulcke F, Dringen R; ''Handling of iron oxide and silver nanoparticles by astrocytes.''; Neurochem Res, 2013 PubMed
  12. Greish K, Thiagarajan G, Herd H, Price R, Bauer H, Hubbard D, Burckle A, Sadekar S, Yu T, Anwar A, Ray A, Ghandehari H; ''Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles.''; Nanotoxicology, 2012 PubMed
  13. Triboulet S, Aude-Garcia C, Carrière M, Diemer H, Proamer F, Habert A, Chevallet M, Collin-Faure V, Strub JM, Hanau D, Van Dorsselaer A, Herlin-Boime N, Rabilloud T; ''Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses.''; Mol Cell Proteomics, 2013 PubMed
  14. Ma L, Zhao J, Wang J, Liu J, Duan Y, Liu H, Li N, Yan J, Ruan J, Wang H, Hong F; ''The Acute Liver Injury in Mice Caused by Nano-Anatase TiO2.''; Nanoscale Res Lett, 2009 PubMed
  15. McVey M, Tabuchi A, Kuebler WM; ''Microparticles and acute lung injury.''; Am J Physiol Lung Cell Mol Physiol, 2012 PubMed
  16. Chen T, Hu J, Chen C, Pu J, Cui X, Jia G; ''Cardiovascular effects of pulmonary exposure to titanium dioxide nanoparticles in ApoE knockout mice.''; J Nanosci Nanotechnol, 2013 PubMed
  17. Nel A, Xia T, Mädler L, Li N; ''Toxic potential of materials at the nanolevel.''; Science, 2006 PubMed
  18. Rauch J, Kolch W, Laurent S, Mahmoudi M; ''Big signals from small particles: regulation of cell signaling pathways by nanoparticles.''; Chem Rev, 2013 PubMed
  19. Andón FT, Fadeel B; ''Programmed cell death: molecular mechanisms and implications for safety assessment of nanomaterials.''; Acc Chem Res, 2013 PubMed
View all...


View all...
89371view 23:15, 9 September 2016EgonwConnected lines.
88835view 06:18, 15 August 2016Fehrhartconnecting unconnected lines
88266view 07:32, 1 August 2016FehrhartOntology Term : 'nanomaterial response pathway' added !
87252view 06:14, 20 July 2016LindarieswijkChanged necroptosis instead of necrotopsis
84570view 05:23, 3 March 2016Mkutmonfix literature references
84569view 05:18, 3 March 2016Mkutmonadded missing graph ids
82926view 05:57, 13 November 2015FehrhartAdded identifiers (now complete, except nanoparticle)
82925view 05:51, 13 November 2015FehrhartAdded identifiers
82924view 03:27, 13 November 2015FehrhartAdded identifiers
80967view 04:41, 6 July 2015MkutmonModified title
80961view 05:25, 2 July 2015FehrhartModified description
80960view 05:20, 2 July 2015FehrhartNew pathway

External references


View all...
NameTypeDatabase referenceComment
AKTGeneProductENSG00000117020 (Ensembl)
ActinGeneProductPF00022 (Pfam)
AngiogenesisPathwayWP1539 (WikiPathways)
ApoptosisPathwayWP2507 (WikiPathways)
Autophagic cell deathPathwayWP2509 (WikiPathways)
BaxGeneProductENSG00000087088 (Ensembl)
Bcl-2GeneProductENSG00000171791 (Ensembl)
Blood coagulationPathwayWP558 (WikiPathways)
C-reactive proteinGeneProductENSG00000132693 (Ensembl)
COX1 (PTGS1)GeneProductENSG00000095303 (Ensembl)
COX2 (PTGS2)GeneProductENSG00000073756 (Ensembl)
Cell adhesionPathwayWP306 (WikiPathways)
Cell cyclePathwayWP179 (WikiPathways)
CytoskeletonPathwayWP51 (WikiPathways)
DNA damage responsePathwayWP707 (WikiPathways)
DifferentiationPathwayWP2848 (WikiPathways)
FAK (PTK2)GeneProductENSG00000169398 (Ensembl)
Glutathione Metabolite16856 (ChEBI)
HMOX1GeneProductENSG00000100292 (Ensembl)
IL-6GeneProductENSG00000136244 (Ensembl)
Il-6 signalingPathwayWP364 (WikiPathways)
Il-8GeneProductENSG00000169429 (Ensembl)
Immune system up or down regulationPathwayWP2783 (WikiPathways)
InflammationPathwayWP453 (WikiPathways)
IntegrinGeneProductENSG00000156886 (Ensembl)
MetallothioneinGeneProductPF00131 (Pfam)
NF-kBGeneProductENSG00000170322 (Ensembl)
NecroptosisPathwayWP2513 (WikiPathways)
NecrosisPathwayWP2513 (WikiPathways)
Oxidative stressPathwayWP408 (WikiPathways)
P-cadherinGeneProductENSG00000062038 (Ensembl)
PI3KGeneProductENSG00000171608 (Ensembl)
Prostaglandin MetaboliteCHEBI:26333 (ChEBI)
Prostaglandin pathwayPathwayWP98 (WikiPathways)
TNF-a SignalingPathwayWP231 (WikiPathways)
TNF-aGeneProductENSG00000232810 (Ensembl)
collagen IVGeneProductENSG00000187498 (Ensembl)
cyclin D3GeneProductENSG00000112576 (Ensembl)
ferritinGeneProductPF00210 (Pfam)
fibronectinGeneProductENSG00000115414 (Ensembl)
lamininGeneProductENSG00000053747 (Ensembl)

Annotated Interactions

<cite>No annotated interactions</cite>